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Abstract 

Generative Adversarial Networks (GANs) have emerged as a significant method in 
unsupervised learning, demonstrating remarkable capabilities in generating realistic 
synthetic data. This study presents a comprehensive implementation and analysis of Deep 
Convolutional Generative Adversarial Networks (DC-GANs) applied to CIFAR-10 and 
CelebA datasets. I conduct an extensive empirical investigation examining the impact of 
different activation functions, optimization strategies, and hyperparameter configurations 
on model performance and training stability. Through systematic comparisons of ReLU 
and ELU activations across varied learning rate configurations, I demonstrate DC-GAN 
effectiveness in generating high-quality synthetic images while providing insights into 
training dynamics and output quality. The results contribute to understanding GAN 
training processes and offer practical guidelines for implementing DC-GANs across 
different image generation tasks. My findings indicate that activation function choice and 
hyperparameter tuning significantly impact both training stability and sample quality, 
with notable differences observed between natural object datasets and human face 
datasets. 

 

 



 

1. Introduction 

The field of generative modeling has 
experienced huge advancement with the 
introduction of Generative Adversarial 
Networks by Goodfellow et al. in 2014. 
These networks have revolutionized the 
approach to unsupervised learning by 
introducing a novel adversarial training 
paradigm that pits two neural networks 
against each other in a minimax game. The 
generator network learns to create realistic 
data samples from random noise with the 
goal of fooling the discriminator, while the 
discriminator network learns to distinguish 
between real and generated samples. This 
adversarial process drives both networks to 
improve iteratively, resulting in generators 
capable of producing highly realistic 
synthetic data that can successfully deceive 
even well-trained discriminators. In short, 
GANs are basically arm wrestling matches 
between two competing neural networks.  

The evolution from basic GANs to Deep 
Convolutional GANs was a crucial 
advancement in the field, addressing many 
of the training instabilities and mode 
collapse issues that plagued early 
implementations. DC-GANs introduced 
architecture that significantly improved 
training stability and output quality, making 
them particularly effective for image 
generation tasks. The incorporation of 
convolutional layers, batch normalization, 
and specific activation functions created a 
more robust framework for generating 
high-resolution images across various 
domains. 

Despite these advancements, training GANs 
remains a challenging task characterized by 
delicate balance requirements between 
generator and discriminator performance. 
The sensitivity to hyperparameter choices, 
architectural decisions, and optimization 

strategies necessitates comprehensive 
empirical investigation to understand 
optimal configurations for different datasets 
and applications. Furthermore, the behavior 
of DC-GANs varies significantly across 
different types of image data, requiring 
dataset-specific optimization, which is 
evident in this study as well.  

This study addresses these challenges 
through a systematic investigation of 
DC-GAN performance on two 
fundamentally different image datasets: 
CIFAR-10, mostly representing objects with 
diverse categories and textures, and CelebA, 
consisting of human faces with more 
constrained but highly detailed features. My 
research aims to provide comprehensive 
insights into the factors influencing 
DC-GAN training and performance, 
contributing to both theoretical 
understanding and practical implementation 
guidelines. 

The primary objectives of this research 
include: first, implementing robust 
DC-GAN architectures capable of 
generating high-quality samples on both 
datasets; second, conducting hyperparameter 
and architectural optimization to identify 
optimal configurations for different 
scenarios; third, analyzing the impact of 
various architectural choices on training 
dynamics and output quality; and fourth, 
providing comparative analysis between 
dataset-specific behaviors and requirements. 

2. Methodology 

2.1 Architecture Design 

My DC-GAN implementation loosely 
follows the architectural guidelines 
established by Radford et al., with 
systematic variations to explore the impact 
of different design choices. The generator 



 

network employs a series of transposed 
convolutional layers to progressively 
upsample random noise vectors into full 
resolution images. The architecture begins 
with a dense layer that reshapes the input 
noise vector into a small spatial feature map, 
followed by multiple transposed 
convolutional layers with decreasing filter 
sizes and increasing spatial dimensions. 

In my experiments, the discriminator 
network implements a convolutional 
architecture that progressively downsamples 
input images to produce classification 
outputs. The network employs convolutions 
to reduce spatial dimensions while 
increasing feature depth, with LeakyReLU 
activations used throughout the hidden 
layers. Both networks incorporate batch 
normalization layers to stabilize training and 
improve convergence, with the generator 
using ReLU and ELU activations in hidden 
layers across my experiments, while the 
output layer employs hyperbolic tangent 
activation to ensure output values fall within 
the appropriate range. 

2.2 Training Strategy 

The training process implements the 
standard GAN minimax objective function, 
where the generator seeks to minimize the 
discriminator's ability to distinguish 
generated samples from real data, while the 
discriminator maximizes its classification 
accuracy. I employ alternating optimization, 
updating the discriminator and generator 
networks in separate steps to maintain 
training balance. 

To address common training instabilities, I 
implement several stabilization techniques 
including spectral normalization 
(CIFAR-10), exponential moving averages 
(EMA), instance noise injection with decay, 
label smoothing, and weight initialization 
strategies. Additional techniques include 

mixed precision training with gradient 
scaling (CIFAR-10) and careful learning rate 
selection. The training process monitors 
generator loss and discriminator loss to track 
training progress. 

2.3 Experimental Design  

My experimental framework focuses on 
systematic variation of activation functions 
in the generator networks and learning rate 
configurations, comparing ReLU and ELU 
activations across different datasets 
(CIFAR-10 and CelebA) with varying 
learning rate schedules. The experimental 
variables include activation function choice, 
network architectures, different learning 
rates for generator and discriminator 
(including asymmetric learning rates where 
discriminator uses higher learning rates), 
and training epochs. Each experiment uses 
different random seeds and implements 
comprehensive logging to track training 
progress and loss dynamics throughout the 
training process. 

3. Datasets 

CIFAR-10  

The CIFAR-10 dataset consists of 60,000 
32x32 color images distributed across ten 
object categories: airplanes, automobiles, 
birds, cats, deer, dogs, frogs, horses, ships, 
and trucks. Each category contains 6,000 
images, with 5,000 designated for training 
and 1,000 for testing. The dataset presents 
unique challenges for generative modeling 
due to the diversity of object types, varying 
textures, colors, and shapes within each 
category. 

The relatively low resolution of CIFAR-10 
images makes it an ideal testbed for initial 
GAN experiments while still providing 
sufficient complexity to evaluate model 



 

performance meaningfully. The dataset's 
categorical diversity requires the generator 
to learn representations spanning 
significantly different visual domains, from 
mechanical objects like automobiles and 
airplanes to biological beings like animals. 

Preprocessing for CIFAR-10 involves 
normalizing pixel values to the range [-1, 1] 
to match the generator's output activation 
function. I apply standard data augmentation 
techniques during training to increase 
dataset diversity and improve model 
generalization, including random horizontal 
flipping and slight rotation variations. 

CelebA  

The CelebFaces Attributes dataset contains 
over 200,000 celebrity face images with 40 
binary attribute annotations per image. For 
my experiments, I use a subset of 
approximately 50,000 high-quality images 

cropped and aligned to focus on facial 
features. The images are resized to 64x64 
pixels to maintain reasonable training times 
while preserving essential facial details. 

CelebA has different challenges compared 
to CIFAR-10, as the images exhibit more 
constrained variation within a specific 
domain while requiring high-fidelity 
generation of human facial features. The 
dataset requires careful attention to 
fine-grained details such as skin texture, 
facial symmetry, and feature consistency 
that are critical for realistic face generation. 

Preprocessing for CelebA includes center 
cropping to remove background elements 
and focus on facial regions, followed by 
normalization to the [-1, 1] range. I 
implement careful quality filtering to 
remove corrupted or poorly aligned images 
that could negatively impact training 
stability. 

4. CIFAR-10 Results and Discussion  
The following analysis presents results from the CIFAR-10 experiments, comparing the 
performance of ELU and ReLU activation functions in DCGAN architectures. CelebA results 
will be discussed in subsequent sections. 

4.1 Training Dynamics Analysis 

The CIFAR-10 experiments revealed significant differences in training behavior between models 
using ELU and ReLU activation functions. The training dynamics, sample quality, and loss 
distributions demonstrate clear performance disparities between these activation choices. 



 

Figure 1 presents the complete training profile for the best ELU-based model on CIFAR-10. The 
training loss curves show problematic dynamics: the generator loss (blue line) drops rapidly 
within the first 10 epochs before stabilizing with minor oscillations, while the discriminator loss 
(red line) increases steadily from. This diverging pattern indicates an imbalanced adversarial 
training process where the discriminator becomes overly dominant. The recent loss distribution 
histogram confirms this imbalance, with generator losses clustering tightly around 0.72-0.73 and 
discriminator losses spread across 0.90-0.95. The generated samples clearly reflect these training 
issues, they appear uniformly blurry, desaturated, and lacking distinct object features, exhibiting 
the characteristic signs of mode collapse.  

Figure 2 presents the training profile for the ReLU-based model on CIFAR-10 with G_LR = 
1e-4 and D_LR = 2e-4. The training loss curves show healthy adversarial dynamics: the 
generator loss (blue line) exhibits a sharp initial drop from 1.8 to approximately 0.7 within the 
first 20 epochs, then stabilizes around 0.7 throughout the remaining training. The discriminator 
loss (red line) rises from around 0.4 to 1.35 and plateaus, indicating balanced competition 
between the networks. The recent loss distribution histogram shows both networks operating in 
complementary ranges (around 0.7 for generator, 1.3 for discriminator), suggesting effective 
adversarial learning. The generated samples display excellent visual quality with recognizable 
objects, clear boundaries, diverse textures, and appropriate color saturation, including 
identifiable animals, vehicles, and natural scenes from the CIFAR-10 classes. 



 

Figure 3 demonstrates the training behavior for the ReLU-based model with balanced learning 
rates (G_LR = D_LR = 1e-4) on the same CIFAR-10 dataset. The training curves show more 
constrained dynamics: both generator and discriminator losses remain relatively stable 
throughout training, with the generator loss hovering around 0.7 and the discriminator loss 
maintaining approximately 1.35. However, the recent loss distribution reveals concerning 
patterns—the generator losses cluster very tightly around 0.7 with minimal variation, while 
discriminator losses show some spread around 1.3. Most notably, the generated samples exhibit 
significant quality degradation compared to Figure 2, with many images appearing as uniform 
gray patches, blurry textures, and limited recognizable content, indicating potential mode 
collapse or training stagnation 

4.2 Architectural Impact Assessment 

While all CIFAR-10 models shared similar 
foundational DC-GAN 
architectures—including spectral 
normalization in the discriminator and 
transposed convolutions in the 
generator—both activation function choice 
and learning rate configuration proved to be 
critical architectural decisions for this 
dataset. 

ELU activations, despite their theoretical 
advantage of smooth negative regions, led to 
over-smoothed outputs with predominantly 
low-frequency textures when applied to 
CIFAR-10 images. The generated samples 
lacked the sharp transitions and detailed 
structures characteristic of natural images in 
this dataset. This effect appears to stem from 
ELU's tendency to saturate in deep 
networks, effectively dampening the 
gradient flow necessary for learning the 
high-frequency details present in 
CIFAR-10's diverse object classes. 

The ReLU model with asymmetric learning 
rates (Figure 2) successfully maintained the 
sparse and aggressive signal propagation 
needed for detailed feature learning on 
CIFAR-10. The higher discriminator 
learning rate enabled the network to capture 
higher-frequency patterns while maintaining 
training stability, resulting in samples with 
significantly better visual sharpness and 
object definition compared to both the ELU 

model and the balanced ReLU 
configuration. 

In contrast, the ReLU model with symmetric 
learning rates (Figure 3) failed to achieve 
effective adversarial balance despite using 
the same activation function as the 
successful configuration. The identical 
learning rates appear to have led to 
insufficient discriminator challenge, 
resulting in generator complacency and poor 
sample diversity. This demonstrates that 
activation function choice alone is 
insufficient—proper hyperparameter tuning 
is essential for optimal performance. 

4.3 Hyperparameter Optimization  

My hyperparameter analysis on CIFAR-10 
revealed that both activation function choice 
and learning rate configuration significantly 
impact model performance. The 
ReLU-based configuration using G_LR = 
1e-4 and D_LR = 2e-4 (Figure 1) achieved 
substantially better visual quality and 
diversity compared to both the ELU model 
and the balanced ReLU learning rate 
configuration (G_LR = D_LR = 1e-4, Figure 
2). 

The ELU models appeared particularly 
sensitive to learning rate imbalances when 
training on CIFAR-10, with the activation 
function's reduced gradient magnitude in 
certain regions making the optimization 
landscape challenging to navigate regardless 



 

of learning rate settings. This sensitivity 
resulted in consistently poor sample quality 
across different hyperparameter 
configurations. 

The asymmetric learning rate ReLU 
configuration appears to provide the optimal 
competitive dynamic between generator and 
discriminator networks on CIFAR-10. The 
higher discriminator learning rate ensures 
that the discriminator remains sufficiently 

challenging throughout training, preventing 
the generator from settling into low-quality 
local minima that plagued both the ELU 
model and the balanced ReLU 
configuration. 

 

 
 

4.4 Sample Quality Evaluation 

Visual inspection of CIFAR-10 generated samples revealed dramatic quality differences across 
all three configurations, which were further corroborated by quantitative evaluation using the 
Inception Score (IS). The Inception Score measures both the quality and diversity of generated 
images by evaluating how confidently a pre-trained ImageNet classifier can categorize the 
generated samples and how diverse the predicted class distribution is across the entire generated 
set. Higher IS values indicate better sample quality and greater diversity. 

The ELU-based model, shown in Figure 1, consistently produced images that were blurry, 
desaturated, and lacking in distinct object boundaries, often exhibiting repetitive textural patterns 
and poor class distinction that failed to capture the diversity of objects present in CIFAR-10's ten 
categories. This poor visual quality was reflected in the quantitative metrics, with the best ELU 
configuration achieving an Inception Score of 2.87 ± 0.98, indicating limited sample quality and 
diversity. 

As demonstrated in Figure 2, the asymmetric learning rate ReLU model produced high-quality 
images with well-defined structures, sharp contrasts, and rich color distributions appropriate for 
CIFAR-10 imagery. The generated images contained recognizable object-like features with clear 
boundaries and diverse textural elements, successfully representing various classes from the 
dataset including animals with distinct features, vehicles with clear geometric structures, and 
other objects with appropriate detail. This superior visual quality was quantitatively confirmed 
by an Inception Score of 5.49 ± 1.8 for the best ReLU configuration, nearly doubling the 
performance of the ELU model. 

In contrast, samples from the balanced learning rate ReLU model (Figure 3) showed severe 
quality degradation despite using the same activation function. Many generated images appeared 
as uniform gray patches, while others exhibited blurry, indistinct textures with poor color 
saturation and minimal recognizable content. This pattern suggests mode collapse or insufficient 
training dynamics, where the generator failed to learn the full complexity of the CIFAR-10 data 
distribution. 

The superior performance of the asymmetric ReLU configuration can be attributed to its ability 
to maintain strong gradient flow during training while providing appropriate competitive balance 
between networks. This characteristic enabled effective learning of high-resolution structural 



 

patterns that both ELU-based models and improperly configured ReLU models failed to capture 
in this dataset. The substantial difference in Inception Scores (5.49 ± 1.8 vs 2.87 ± 0.98) provides 
quantitative validation of the visual quality improvements observed in the generated samples. 

The CIFAR-10 findings demonstrate that while ReLU activations show superior potential 
compared to ELU for DCGAN architectures, optimal performance requires careful attention to 
learning rate configuration, with asymmetric rates (higher for discriminator) yielding 
substantially better results than balanced approaches on this dataset. These results will be 
compared with the CelebA experiments in the following sections to assess the generalizability of 
these findings across different image domains. 

5. CelebA Results and Discussion 
The following analysis presents results from the 
CelebA experiments, comparing different learning 
rate configurations for ELU and  ReLU activation 
functions in DCGAN architectures trained on 
celebrity face generation.  

5.1 Architectural Impact Assessment 

The CelebA dataset's complexity, featuring 
diverse facial attributes, expressions, and 
backgrounds, provided a challenging task for 
generative model performance. 

Figure 4 presents generated samples from our 
ReLU-based model trained on CelebA at epoch 
25 with discriminator learning rate set to 0.0003 
and Generator learning rate set to 0.0002. The 
generated faces exhibit proper anatomical 
proportions, realistic skin textures, varied hair 
styles and colors, and natural looking expressions 
followed by the ELU-generated samples.  

While these samples maintain recognizable facial 
structures, they exhibit several quality limitations 
compared to the ReLU configurations. The 
architectural comparison between ELU and ReLU 
activations on CelebA revealed significant 
differences in detail preservation, though both 
successfully learned basic facial structure. 
ReLU-based models proved more effective for 
high-fidelity facial generation, while ELU 
configurations showed systematic limitations in 
fine detail rendering. 



 

ReLU activations excelled at capturing high-frequency facial details including skin texture, hair 
strands, and subtle features. The sharp activation boundaries of ReLU functions effectively 
preserved edge definition and structural boundaries crucial for realistic face generation, with this 
advantage consistent across different learning rate configurations. 

ELU activations, despite maintaining anatomical correctness, produced systematically softer, less 
detailed outputs. The smooth negative region of ELU, theoretically beneficial for gradient flow, 
instead over-smoothed fine-grained facial features critical for photorealistic generation, 
particularly affecting hair textures, skin details, and facial boundaries. 

These results suggest that while facial generation benefits from structural constraints inherent in 
face datasets, optimal quality requires activation functions that effectively preserve 
high-frequency information, favoring ReLU over ELU for this domain. 

Figure 6 presents CelebA training loss dynamics, revealing significant stability differences 
between activation functions. ReLU demonstrates balanced adversarial training with gradual 
generator loss increase and stable discriminator performance, while ELU shows volatile 
dynamics with rapid discriminator dominance, correlating with the observed sample quality 
differences. 

5.2 Hyperparameter Optimization  

The CelebA experiments revealed that 
activation function choice significantly 
impacted sample quality regardless of 
hyperparameter tuning, contrasting with 
CIFAR-10 where learning rate configuration 
was dominant for ReLU performance. 

ReLU configurations showed notable 
sensitivity to learning rates: the 
G_LR=0.00005 setting proved too low for 
effective generator training, while the 
optimal performance came from 
D_LR=0.0003 and G_LR=0.0002. This 

configuration demonstrated consistently 
high visual quality with ReLU's sparse 
activation patterns and sharp gradient 
transitions preserving geometric constraints 
and detailed features necessary for 
convincing face synthesis. 

ELU configurations also varied with 
hyperparameter settings: D_LR=0.0004 and 
G_LR=0.0005 produced overly colorful 
samples with reduced feature visibility, 
while D_LR=0.0003 and G_LR=0.0002 
yielded the best ELU results. However, even 



 

the optimal ELU configuration consistently 
produced lower-quality samples with 
reduced detail preservation compared to 
ReLU, indicating ELU's smooth activation 
function may be fundamentally unsuitable 
for fine-grained detail preservation tasks. 

For CelebA-like datasets, activation function 
choice proved more critical than learning 
rate optimization, with ReLU outperforming 
ELU across all tested configurations, though 
proper hyperparameter tuning remained 
essential for both activation types 

5.3 Sample Quality Evaluation  

Visual inspection of CelebA generated 
samples revealed substantial quality 
differences between ELU and ReLU 
configurations, with ReLU consistently 
outperforming ELU across multiple 
evaluation criteria critical for facial 
generation tasks. 

ReLU Model Performance: The 
ReLU-generated samples (Figure 6) 
demonstrated exceptional facial generation 
quality with sharp, well-defined features and 
photorealistic detail preservation. Key 
strengths included precise anatomical 
accuracy, high-resolution texture rendering 
with realistic skin and hair details, 
convincing fine-grained elements like 
makeup and accessories, natural lighting 
effects, and excellent demographic diversity 
while maintaining consistent quality. This 
superior visual quality was reflected in a 
high Inception Score of 6.82 ± 1.4, 
indicating both quality and diversity in the 
generated samples. 

ELU Model Performance: The 
ELU-generated samples (Figure 7) showed 
acceptable facial structure learning but with 
notable quality limitations. While 
maintaining basic anatomical correctness 
and demographic diversity, they exhibited 
systematic issues including reduced 
sharpness across facial features, 
over-smoothed textures particularly in hair 
and skin rendering, less convincing 
fine-grained details, and generally softer, 
less photorealistic appearance. The ELU 
model achieved an Inception Score of 4.91 ± 
1.2, reflecting the reduced quality and detail 
preservation compared to ReLU outputs. 

The substantial difference in both visual 
quality and quantitative metrics (6.82 vs 
4.91 IS) confirms ReLU's superiority for 
high-fidelity facial generation tasks. 

 

6. Analysis and Conclusion 

6.1 Comparative Analysis 

My comprehensive experiments across 
CIFAR-10 and CelebA datasets revealed 
distinct optimization requirements and 
performance characteristics for DCGAN 
architectures. CIFAR-10 demonstrated high 
sensitivity to learning rate configuration, 

with asymmetric rates (G_LR=1e-4, 
D_LR=2e-4) proving critical for ReLU 
model success, while balanced rates led to 
mode collapse and poor sample quality. In 
contrast, CelebA showed greater robustness 
to hyperparameter variations, with multiple 
ReLU configurations achieving high-quality 
facial generation. 

The fundamental difference lies in structural 
constraints: CelebA's facial geometry 



 

provides inherent training guidance, while 
CIFAR-10's diverse object categories require 
precise adversarial balance to learn complex 
multi-class distributions. ReLU activations 
consistently outperformed ELU across both 
datasets, though the failure modes 
differed—ELU caused mode collapse in 
CIFAR-10 but produced over-smoothed, 
low-detail outputs in CelebA. 

6.2 Training  

Activation function choice emerged as the 
primary factor affecting training stability 
and sample quality. ReLU activations 
demonstrated superior gradient flow and 
detail preservation across both datasets, 
while ELU's smooth negative regions led to 
systematic quality degradation despite 
theoretical advantages. 

Learning rate asymmetry proved essential 
for CIFAR-10 but optional for CelebA, 
suggesting that structured datasets with  

inherent geometric constraints require less 
precise hyperparameter tuning. Early  

indicators of training problems included 
rapid discriminator loss divergence and 
uniform sample appearances, both 
observable within the first 20 epochs. 

6.3 Practical Implementations 

Based on my findings, we recommend 
ReLU activations for all DCGAN 
implementations, with dataset-specific 
hyperparameter strategies. For diverse 
datasets like CIFAR-10, use asymmetric 
learning rates with higher discriminator rates 
(2:1 ratio) and monitor loss dynamics 
closely. For structured datasets like faces, 
balanced learning rates in the 1e-4 to 5e-4 
range prove sufficient. 

Optimal configurations achieved Inception 
Scores of 5.49±1.8 (CIFAR-10) and 
6.82±1.4 (CelebA) for ReLU models, 
substantially outperforming ELU 
alternatives (2.87±0.98 and 4.91±1.2 
respectively). 

 

Conclusion and Future Work 

This study demonstrates that activation function choice significantly impacts DCGAN 
performance across different image domains, with ReLU consistently superior to ELU despite 
theoretical expectations. Dataset characteristics fundamentally influence optimization 
requirements, with structured domains showing greater hyperparameter robustness than diverse 
object datasets. 

My findings provide concrete evidence for ReLU's effectiveness in generative modeling and 
establish practical guidelines for DCGAN implementation. Future work should explore advanced 
architectures like Progressive GANs and StyleGAN with similar activation function 
comparisons, and investigate transfer learning strategies between datasets to develop more 
generalizable training approaches. 
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